Differential Requirements of Singleplex and Multiplex Recombineering of Large DNA Constructs
نویسندگان
چکیده
Recombineering is an in vivo genetic engineering technique involving homologous recombination mediated by phage recombination proteins. The use of recombineering methodology is not limited by size and sequence constraints and therefore has enabled the streamlined construction of bacterial strains and multi-component plasmids. Recombineering applications commonly utilize singleplex strategies and the parameters are extensively tested. However, singleplex recombineering is not suitable for the modification of several loci in genome recoding and strain engineering exercises, which requires a multiplex recombineering design. Defining the main parameters affecting multiplex efficiency especially the insertion of multiple large genes is necessary to enable efficient large-scale modification of the genome. Here, we have tested different recombineering operational parameters of the lambda phage Red recombination system and compared singleplex and multiplex recombineering of large gene sized DNA cassettes. We have found that optimal multiplex recombination required long homology lengths in excess of 120 bp. However, efficient multiplexing was possible with only 60 bp of homology. Multiplex recombination was more limited by lower amounts of DNA than singleplex recombineering and was greatly enhanced by use of phosphorothioate protection of DNA. Exploring the mechanism of multiplexing revealed that efficient recombination required co-selection of an antibiotic marker and the presence of all three Red proteins. Building on these results, we substantially increased multiplex efficiency using an ExoVII deletion strain. Our findings elucidate key differences between singleplex and multiplex recombineering and provide important clues for further improving multiplex recombination efficiency.
منابع مشابه
Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond.
"Recombineering," in vivo genetic engineering with short DNA homologies, is changing how constructs are made. The methods are simple, precise, efficient, rapid, and inexpensive. Complicated genetic constructs that can be difficult or even impossible to make with in vitro genetic engineering can be created in days with recombineering. DNA molecules that are too large to manipulate with classical...
متن کاملRecombination between linear double-stranded DNA substrates in vivo.
Recombineering technology in Escherichia coli enables targeting of linear donor DNA to circular recipient DNA using short shared homology sequences. In this work, we demonstrate that recombineering is also able to support recombination between a pair of linear DNA substrates (linear/linear recombineering) in vivo in E. coli. Linear DNA up to 100 kb is accurately modified and remains intact with...
متن کاملConversion of BAC clones into binary BAC (BIBAC) vectors and their delivery into basidiomycete fungal cells using Agrobacterium tumefaciens.
The genetic transformation of certain organisms, required for gene function analysis or complementation, is often not very efficient, especially when dealing with large gene constructs or genomic fragments. We have adapted the natural DNA transfer mechanism from the soil pathogenic bacterium Agrobacterium tumefaciens, to deliver intact large DNA constructs to basidiomycete fungi of the genus Us...
متن کاملRecombineering: highly efficient in vivo genetic engineering using single-strand oligos.
Recombineering provides the ability to make rapid, precise, and inexpensive genetic alterations to any DNA sequence, either in the chromosome or cloned onto a vector that replicates in E. coli (or other recombineering-proficient bacteria), and to do so in a highly efficient manner. Complicated genetic constructs that are impossible to make with in vitro genetic engineering can be created in day...
متن کاملComparison of molecular and extract-based allergy diagnostics with multiplex and singleplex analysis
BACKGROUND ImmunoCAP ISAC 112, is a commercially available molecular allergy IgE multiplex test. Data on the comparison of this rather novel test with extract-based as well as molecular ImmunoCAP singleplex IgE tests is missing. OBJECTIVE To perform a comparison between the ISAC multiplex IgE assay and the ImmunoCAP singleplex test results. METHODS Serum samples of 101 adults with grass pol...
متن کامل